Excerpts from a geological review and sampling report relevant to BC claims

Fairplay Mining District

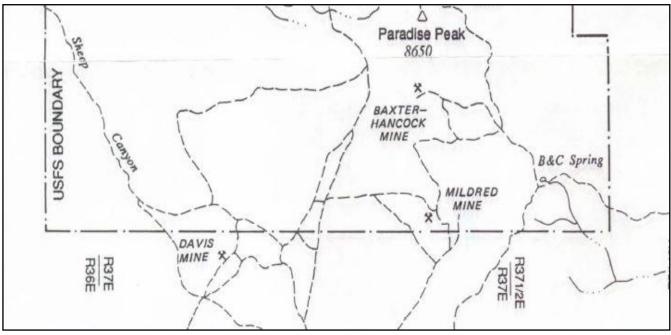
Mining and exploration interest in the district has been focused on precious metal deposits, coppermolybdenum deposits, and to a lesser extent, tungsten and mercury deposits. Most of the coppermolybdenum exploration has been in the northeast part of the district, at and around the Buzzard Peak stock.

The granite stock, exposed over an area about 1 mi long by 0.5 mi wide, has undergone intense stockwork quartz veining and sericite alteration (Silber1ing and John, 1989). The quartz veins contain various amount of chalcopyrite, pyrite, chalcocite, tenorite, sphalerite, stibnite, galena, molybdenite, scheelite, silver, and gold. The sulfide-bearing quartz veins are also found over a large area in the surrounding limestone, dolomite, shale, and siltstone.

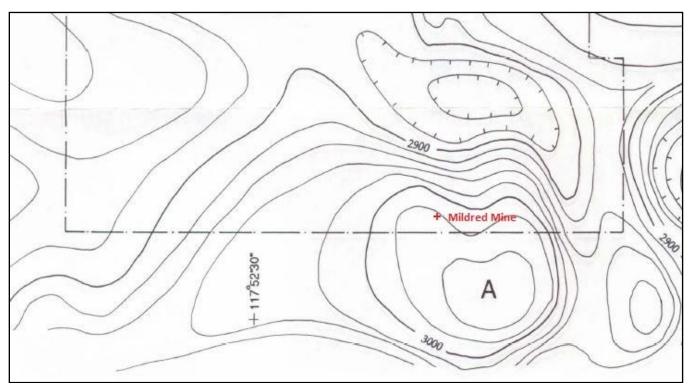
The BC Springs copper-molybdenum deposit, owned by Sharon Steel Corporation (*now by 2Prospectors*), is located 1 mi east of the Buzzard Peak stock. Reportedly, the mineralization is hosted in limestone as disseminations in addition to fissure veins. The deposit is approximately 4,000 ft long, 1,500 ft wide, 170 ft thick, occurs at a depth of 560 ft, and has published identified resources of 131 million tons averaging 0.12 percent molybdenum (Lowe and others, 1985).

An interesting area of complex geology, numerous workings, and anomalous sample analyses occurs in a zone about 3 mi long and 3/4 mi wide extending NW and SE from the Mildred mine. The zone parallels the range front and is underlain by faulted Tertiary volcanic rocks, limestone, dolomite, sandstone, calcareous clastic rock, and greenstone. Many of the workings explore shear zones, fault contacts, quartz veins, tactites, and areas of brecciation and silicification.

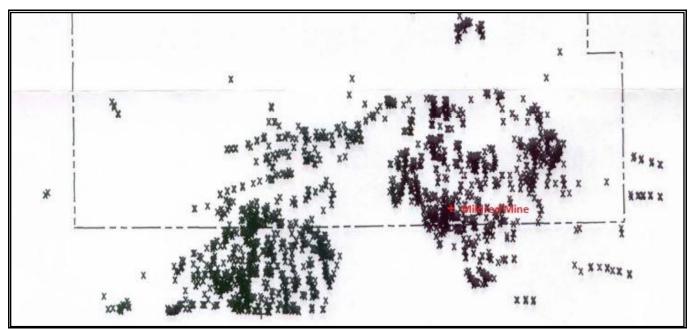

Anomalous amounts of cadmium, tellurium, bismuth, selenium, thallium, and gallium are present as "pathfinder elements" in addition to gold, silver, copper, lead, zinc, molybdenum, and tungsten. Skarn hosted or Carlin-type precious metal deposits may be delineated here with additional exploration.


Samples taken consisted of four types:

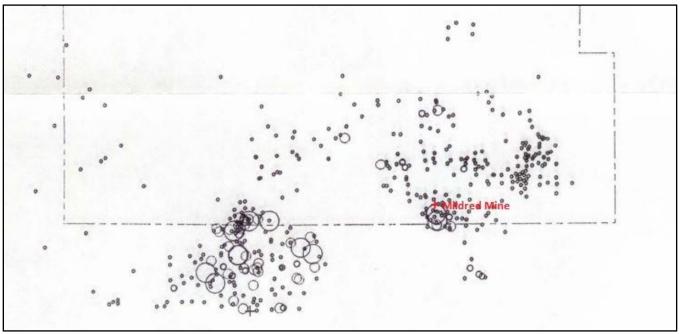
- 1) chip a regular series of rock chips taken in a continuous line across a mineralized zone or other exposure;
- 2) random chip an unsystematic series of chips taken from an exposure of apparently homogeneous rock;
- 3) grab rock pieces collected unsystematically from a dump or stockpile, or float (loose rock lying on the ground);
- 4) select an intentionally biased selection of rock taken because of a unique or unusual property.


Sample <u>Number</u>	Sample <u>Type</u>	ppm <u>Go1d</u>	ppm <u>Silver</u>	ppm <u>Copper</u>	ppm Lead	ppm Zinc	ppm <u>Tungsten</u>
331 331 From shea	Select ar zone trending N	6.0600 . 80 E. and dipp	6.01 ing 60 deg. SE	303.00 2. in greenstone ex	54.80 posed at 40 ft de	90.20 ep shaft.	
332 <u>332</u> Malachite	Select stained, hydrother	0.3380	65.60 reenstone and	26500.00 volcanic rock exp	64.80 osed in cut.	130.00	
333 333 Limonite cut in lime	Select and malachite-stai estone.	0.1110 ned, quartz and	83.00 limonite-repla	67700.00 ced rock containin	1355.00 ng galena and cha	9623.00 lcopyrite from o	pen
334 <u>334 Limonite-</u>	Select stained, silicified 1	0.8830 imestone from a	34.80 lump of 10 ft (110.00 deep shaft on lime	2751.00 stone-greenstone	11200.00 fault contact.	
	Select replaced rock fron N. 50 W. and dipp		30.20 deep shaft near	2211.00 r limestone-greens	5869.00 stone fault contact	1651.00 t. From shear zo	ne
336 336 Malachite	Select stained greenston	0.0450 e from dump of	2.49 workings near	15100.00 limestone-greens	13.00 tone contact.	85.00	
339 <u>339 Malachite</u>	Select and azurite staine	0.0050 d, limestone and	11.60 I silicified lime	26100.00 estone containing	21.00 chalcopyrite from	275.00	
	Select stained, brecciated ie-volcanic rock co		5.69 rom fault zone	23.50 e trending N. 5 W.	302.00 and dipping 80 d	60.60 eg. NE. at	
355 355 Limonite	Select stained, bleached,	10.8000 partially silicific	32.10 ed limestone fr	514.00 rom dump.	141.00	1499.00	
356 356 Malachite	Select and azurite staine	0.0440 d quartz and sili	41.90 cified limestor	18800.00 ne from pit.	130.00	6596.00	
358 358 Malachite	Select stained, dark gree	0.1050 n, partially silici	51.20 fied limestone	10200.00 containing pyrite	8472.00 and chalcopyrite	18200.00 from dump.	

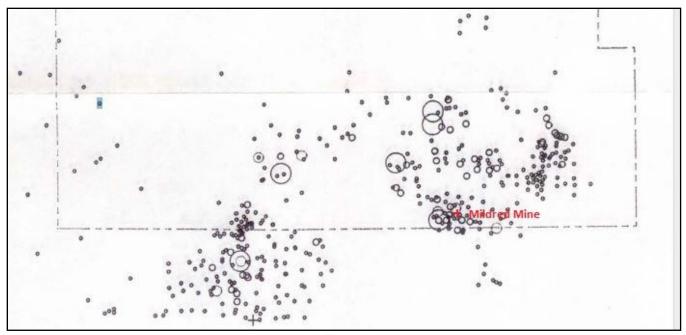
Sample <u>Number</u>	Sample <u>Type</u>	ppm <u>Go1d</u>	ppm <u>Silver</u>	ppm <u>Copper</u>	ppm Lead	ppm Zinc	ppm <u>Tungsten</u>
	Select stained quartz co granitic dike.	22.2000 ontaining pyrite as	29.00 nd chalcopyrite	495.00 e from dump of glo	394.00 ory hole in limes	3272.00 tone near N. 40 V	W
360 360 Limonite	Select stained Quartz a	0.3350 nd silicified limes	3.71 stone from dun	182.00 np of 40 ft deep sh	334.00 haft.	3113.00	
361 <u>361 Quartz-die</u>	Select	0.0730 actite from pit in 1	5.14 limestone.	913.00	60.20	21600.00	1421.00
362 <u>362</u> Malachite	Select and azurite stain	0.0910 ned diopside-epid	130.00 lote-quartz tact	23400.00 ite in limestone.	305.00	29100.00	
367 <u>367</u> Limonite	Select stained diopside	0.2980 -epidote-quartz ta	199.00 actite from pit i	28000.00 n limestone.	4183.00	59600.00	2815.00
369 369 Malachite limestone		0.3560 onite stained qua	373.00 rtz-epidote-ma	24000.00 gnetite-garnet-dio	9136.00 pside tactite fron	85100.00 n dump of adit in	5961.00
370 <u>370 Epidote-d</u>	Select iopside-quartz ta	0.0100 actite from pit in l	21.60 limestone.	305.00	11500.00	8922.00	
374 374 Limonite	Select and malachite st	0.0090 ained epidote-dio	37.10 pside-quartz-c	4511.00 alcite tactite from	10800.00 dump of adit in l	40300.00 imestone	1824.00
379 379 Tactite co	Select	0.0660 te from stockpile	138.00 in limestone.	1590.00	5320.00	96600.00	19031.00
380 <u>380</u> Scheelite	Select and powellite be	0.0090 aring tactite from	34.20 a open cut in lin	51.50 mestone.	2116.00	17200.00	1011.00
381 <u>381 Tactite co</u>	Select	<0.0005	7.87 theelite and po-	676.00 wellite.	730.00	29700.00	2181.00
382 <u>382</u> Diopside-	Select epidote-quartz ta	0.0580 actite from cut in	333.00 limestone.	10.10	12600.00	144000.00	6140.00



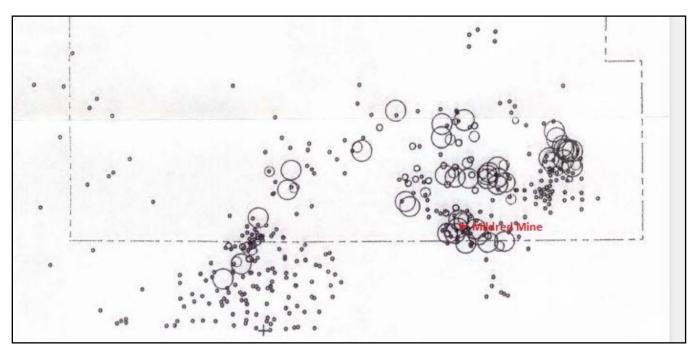
AREA MINES

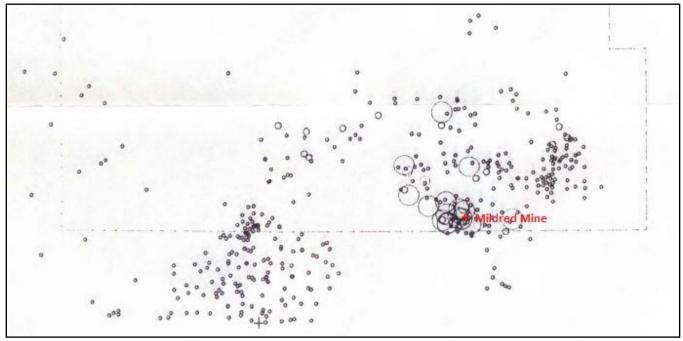

MAGNETIC ANOMALIES

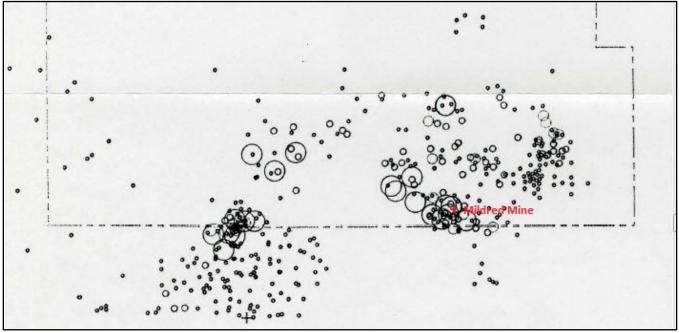
Interpretation of the anomalies shown on figure 10 is by Davis and others (1979). Some of the target areas where parts of igneous rock masses and adjacent sedimentary strata are marked by anomalies include 1) preTertiary sedimentary and metavolcanic rocks beneath the flank of the positive anomaly A;

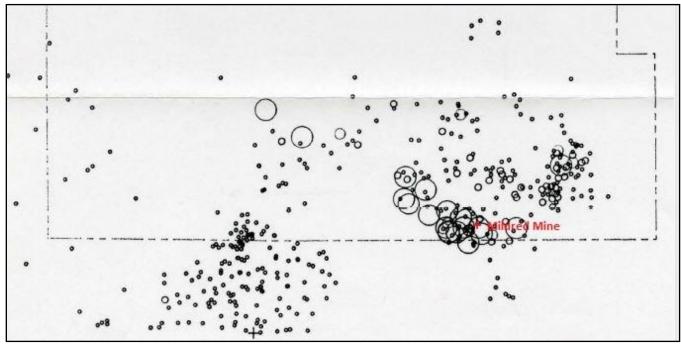


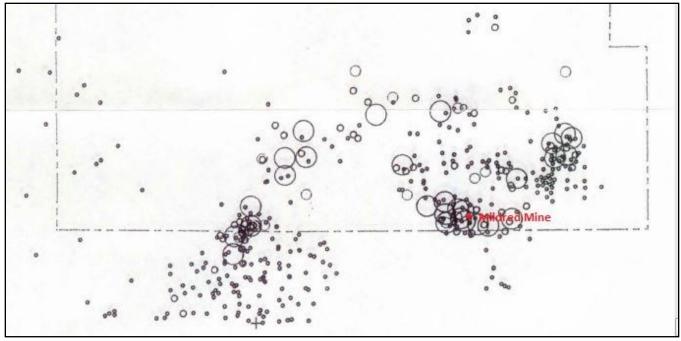
Area Mines and Prospects


Sample Site Maps Showing Assay Results (larger circles equal higher value)

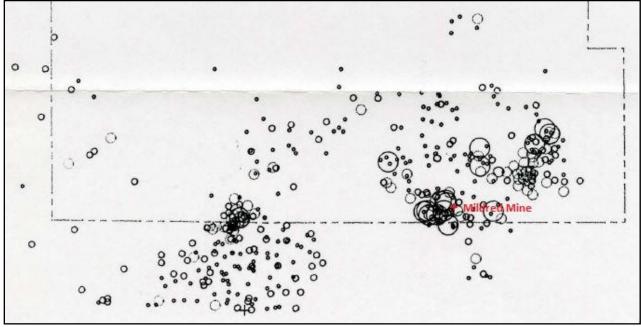

Gold

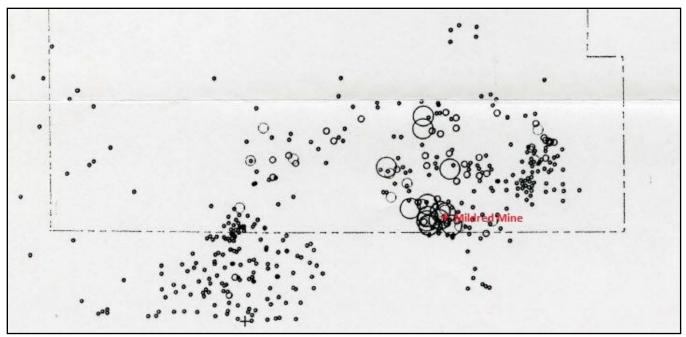

Silver

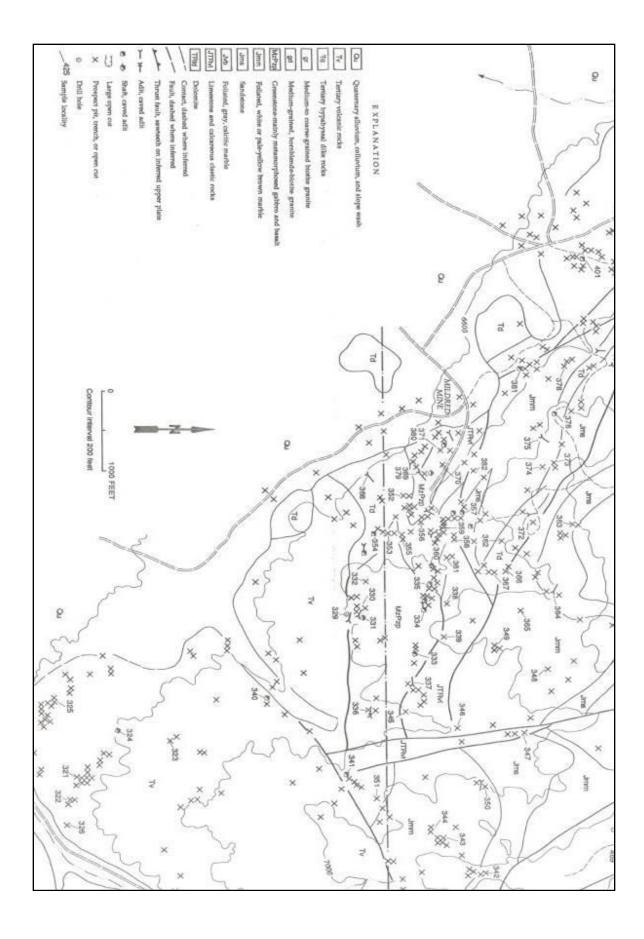

Copper


Zinc


Tellurium


Thallium


Selenium


Bismuth

Gallium

Cadmium

